Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Interactions of ferrous iron with clay mineral surfaces during sorption and subsequent oxidation

Author affiliations

Abstract

In submerged soils and sediments, clay minerals are often exposed to anoxic waters containing ferrous iron (Fe2+). Here, we investigated the sorption of Fe2+ onto a synthetic montmorillonite (Syn-1) low in structural Fe (<0.05 mmol Fe per kg) under anoxic conditions and the effects of subsequent oxidation. Samples were prepared at two Fe-loadings (0.05 and 0.5 mol Fe added per kg clay) and equilibrated for 1 and 30 days under anoxic conditions (O2 < 0.1 ppm), followed by exposure to ambient air. Iron solid-phase speciation and mineral identity was analysed by 57Fe Mössbauer spectroscopy and synchrotron X-ray absorption spectroscopy (XAS). Mössbauer analyses showed that Fe(II) was partially oxidized (14–100% of total added Fe2+) upon sorption to Syn-1 under anoxic conditions. XAS results revealed that the added Fe2+ mainly formed precipitates (layered Fe minerals, Fe(III)-bearing clay minerals, ferrihydrite, and lepidocrocite) in different quantities depending on the Fe-loading. Exposing the suspensions to ambient air resulted in rapid and complete oxidation of sorbed Fe(II) and the formation of Fe(III)-phases (Fe(III)-bearing clay minerals, ferrihydrite, and lepidocrocite), demonstrating that the clay minerals were unable to protect ferrous Fe from oxidation, even when equilibrated 30 days under anoxic conditions prior to oxidation. Our findings clarify the role of clay minerals in the formation and stability of Fe-bearing solid phases during redox cycles in periodically anoxic environments.

Graphical abstract: Interactions of ferrous iron with clay mineral surfaces during sorption and subsequent oxidation

Back to tab navigation

Supplementary files

Article information


Submitted
04 Feb 2020
Accepted
14 Apr 2020
First published
06 May 2020

This article is Open Access

Environ. Sci.: Processes Impacts, 2020, Advance Article
Article type
Paper

Interactions of ferrous iron with clay mineral surfaces during sorption and subsequent oxidation

N. Van Groeningen, L. K. ThomasArrigo, J. M. Byrne, A. Kappler, I. Christl and R. Kretzschmar, Environ. Sci.: Processes Impacts, 2020, Advance Article , DOI: 10.1039/D0EM00063A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements