Jump to main content
Jump to site search


Assessing the prevalence, products, and pathways of dissolved organic matter partial photo-oxidation in arctic surface waters

Author affiliations

Abstract

In sunlit waters, photodegradation of dissolved organic matter (DOM) yields completely oxidized carbon (i.e., CO2) as well as a suite of partially oxidized compounds formed from oxygen incorporation (i.e., partial photo-oxidation). Of these two groups of DOM photo-products, more studies focus on CO2 (a greenhouse gas) than on partially oxidized DOM, which is likely a diverse group of compounds with poorly constrained roles in aquatic carbon cycling or biogeochemistry. The objective of this study is to address knowledge gaps on the prevalence, products, and pathways of DOM partial photo-oxidation. Here we traced the photochemical incorporation of isotopically labelled 18O2 into DOM isolated from Alaskan Arctic surface waters using high-resolution mass spectrometry. Complete and partial photo-oxidation of DOM was also quantified as CO2 production and O2 consumption. The majority of 18O-containing partial oxidation photo-products were classified as carboxylic rich alicyclic molecules (CRAM) and overlapped in composition with previously reported photo-products known to result from the oxidation of DOM by singlet oxygen. These results support a previously proposed hypothesis that photo-oxidation by singlet oxygen may contribute to the formation of CRAM, a compound class of DOM ubiquitously observed in surface waters. The novel application of an isotopic tracer for oxygen incorporation with a mass balance approach to quantify complete and partial photo-oxidation of DOM revealed that less than one mol of O2 is required to produce one mol of CO2. A sensitivity analysis based on this new knowledge demonstrated that the magnitude of DOM partial photo-oxidation may be underestimated by up to four-fold. Consequently, partial photo-oxidation likely plays a more prominent role in shaping DOM composition in sunlit waters of the Arctic than previously understood. Therefore, partial photo-oxidation should be increasingly incorporated into the experimental framework of studies focused on DOM composition in surface waters.

Graphical abstract: Assessing the prevalence, products, and pathways of dissolved organic matter partial photo-oxidation in arctic surface waters

Back to tab navigation

Supplementary files

Article information


Submitted
01 Nov 2019
Accepted
10 Feb 2020
First published
11 Feb 2020

Environ. Sci.: Processes Impacts, 2020, Advance Article
Article type
Paper

Assessing the prevalence, products, and pathways of dissolved organic matter partial photo-oxidation in arctic surface waters

C. P. Ward and R. M. Cory, Environ. Sci.: Processes Impacts, 2020, Advance Article , DOI: 10.1039/C9EM00504H

Social activity

Search articles by author

Spotlight

Advertisements