Issue 1, 2020

Effects of antibiotics on microbial community structure and microbial functions in constructed wetlands treated with artificial root exudates

Abstract

In the rhizosphere, plant root exudates can mediate the toxicity of antibiotics on microorganisms, yet the mechanisms are poorly understood. To simulate the antibiotic contamination of global rivers and lakes, the current study investigated the effects of two antibiotics (ofloxacin at 8.69 × 104 ng L−1 and tetracycline at 8.62 × 104 ng L−1) and their binary combination (8.24 × 104 ng L−1 ofloxacin and 7.11 × 104 ng L−1 tetracycline) on bacterial communities in micro-polluted constructed wetlands with and without artificial root exudates. The two antibiotics had no significant effects on the removal of excess carbon and nitrogen from the microcosms treated with and without exudates. Furthermore, with regard to bacterial community structure, antibiotic exposure increased the bacterial richness of bulk and exudate treated microcosms (P < 0.05). However, a significant increase (P < 0.05) in bacterial diversity elicited by ofloxacin and antibiotic mixture exposure was only observed in microcosms with exudates. In exudate treated microcosms, ofloxacin promoted the relative abundance of Arthrobacter spp., which are ofloxacin-resistant bacterial species, which significantly varied from what was observed in microcosms free of exudates. Moreover, tetracycline, ofloxacin and their combination all significantly increased the relative abundance of nitrogen cycling bacteria Rhizobacter spp. and Rhizobium spp., and decreased the relative abundance of antibiotic-resistant bacteria Pseudomonas spp. Simultaneously, with regard to bacterial community functions, the functional profiles (Kyoto Encyclopedia of Genes and Genomes) showed that the pathways of amino acid and carbohydrate metabolism were enhanced by antibiotics in microcosms with exudates. The findings illustrate that antibiotics not only alter the bacterial structure and composition but also change their functional properties in constructed wetlands, and these interruption effects could be affected by root exudates of plants, which may further reveal the ecological implication of plants in constructed wetlands.

Graphical abstract: Effects of antibiotics on microbial community structure and microbial functions in constructed wetlands treated with artificial root exudates

Supplementary files

Article information

Article type
Paper
Submitted
10 Oct 2019
Accepted
13 Dec 2019
First published
26 Dec 2019

Environ. Sci.: Processes Impacts, 2020,22, 217-226

Effects of antibiotics on microbial community structure and microbial functions in constructed wetlands treated with artificial root exudates

X. Tong, X. Wang, X. He, Z. Wang and W. Li, Environ. Sci.: Processes Impacts, 2020, 22, 217 DOI: 10.1039/C9EM00458K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements