Jump to main content
Jump to site search

Issue 12, 2020
Previous Article Next Article

Low energy intensity production of fuel-grade bio-butanol enabled by membrane-based extraction

Author affiliations

Abstract

Widespread use of biofuels is inhibited by the significant energy burden of recovering fuel products from aqueous fermentation systems. Here, we describe a membrane-based extraction (perstraction) system for the recovery of fuel-grade biobutanol from fermentation broths which can extract n-butanol with high purity (>99.5%) while using less than 25% of the energy of current technology options. This is achieved by combining a spray-coated thin-film composite membrane with 2-ethyl-1-hexanol as an extractant. The membrane successfully protects the micro-organisms from the extractant, which, although ideal in other respects, is a metabolic inhibitor. In contrast to water, the extractant does not form a heterogeneous azeotrope with n-butanol, and the overall energy consumption of for n-butanol production is 3.9 MJ kg−1, substantially less than other recovery processes (17.0–29.4 MJ kg−1). By (a) extracting n-butanol from the fermentation broth without a phase change, (b) breaking the heterogeneous azeotrope relationship (less energy consumption for distillation), and (c) utilizing a small volume ratio of extractant : fermentation broth (1 : 100, v/v), the need for high energy intensity processes such as pervaporation, gas stripping or liquid–liquid extraction is avoided. The application of this perstraction system to continuous production of a range of higher alcohols is explored and shown to be highly favourable.

Graphical abstract: Low energy intensity production of fuel-grade bio-butanol enabled by membrane-based extraction

Back to tab navigation

Supplementary files

Article information


Submitted
11 Sep 2020
Accepted
23 Oct 2020
First published
24 Oct 2020

This article is Open Access

Energy Environ. Sci., 2020,13, 4862-4871
Article type
Communication

Low energy intensity production of fuel-grade bio-butanol enabled by membrane-based extraction

J. H. Kim, M. Cook, L. Peeva, J. Yeo, L. W. Bolton, Y. M. Lee and A. G. Livingston, Energy Environ. Sci., 2020, 13, 4862
DOI: 10.1039/D0EE02927K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements