Jump to main content
Jump to site search


Concentration and velocity profiles in a polymeric lithium-ion battery electrolyte

Author affiliations

Abstract

Predictive knowledge of ion transport in electrolytes which bridges microscopic and macroscopic length scales is imperative to design new ion conductors and to simulate device performance. Here, we employed a novel approach combining operando X-ray photon correlation spectroscopy, X-ray absorption microscopy, continuum modelling, and molecular dynamics simulations to probe the ion transport in a baseline polymeric lithium-ion battery electrolyte. In a Li/PEO–LiTFSI/Li symmetric cell under polarization, we determined and rationalized microscopic properties including local electrolyte velocities and ion correlations and connected this insight to measured and simulated macroscopic ion concentration gradients. By relating our results across length scales, we suggest a fairly concentration-independent transference number of about 0.2. Our study shows the broad applicability of operando X-ray photon correlation spectroscopy to the understanding of dynamic phenomena.

Graphical abstract: Concentration and velocity profiles in a polymeric lithium-ion battery electrolyte

Back to tab navigation

Supplementary files

Article information


Submitted
11 Jul 2020
Accepted
15 Sep 2020
First published
15 Sep 2020

Energy Environ. Sci., 2020, Advance Article
Article type
Paper

Concentration and velocity profiles in a polymeric lithium-ion battery electrolyte

H. Steinrück, C. J. Takacs, H. Kim, D. G. Mackanic, B. Holladay, C. Cao, S. Narayanan, E. M. Dufresne, Y. Chushkin, B. Ruta, F. Zontone, J. Will, O. Borodin, S. K. Sinha, V. Srinivasan and M. F. Toney, Energy Environ. Sci., 2020, Advance Article , DOI: 10.1039/D0EE02193H

Social activity

Search articles by author

Spotlight

Advertisements