Issue 11, 2020

Recent advances in developing organic electrode materials for multivalent rechargeable batteries

Abstract

Due to the low cost and abundance of multivalent metallic resources (Mg/Al/Zn/Ca), multivalent rechargeable batteries (MRBs) are promising alternatives to Li-ion and Pb-acid batteries for grid-scale stationary energy storage applications. However, the high performance of inorganic electrode materials in Li-ion batteries does not extend to MRBs, because the high charge density of multivalent cations dramatically reduces their diffusivity in the crystal lattice of inorganic materials. To achieve high-performance MRBs, organic electrode materials (OEMs) with abundant structural diversity and high structural tunability offer opportunities. This review presents an overview of the state-of-the-art OEMs in MRBs, including non-aqueous rechargeable Mg/Al/Zn and aqueous rechargeable Mg/Al/Zn/Ca batteries. The advantages, challenges, development, mechanism, structure, and performance of OEMs in MRBs are discussed in detail. To provide a comprehensive and thorough understanding of OEMs in MRBs, the correlation between molecular structure and electrochemical behavior is also summarized and discussed. This review offers insights for the rational structure design and performance optimization of advanced OEMs in MRBs.

Graphical abstract: Recent advances in developing organic electrode materials for multivalent rechargeable batteries

Article information

Article type
Review Article
Submitted
03 Jul 2020
Accepted
28 Sep 2020
First published
28 Sep 2020

Energy Environ. Sci., 2020,13, 3950-3992

Author version available

Recent advances in developing organic electrode materials for multivalent rechargeable batteries

K. Qin, J. Huang, K. Holguin and C. Luo, Energy Environ. Sci., 2020, 13, 3950 DOI: 10.1039/D0EE02111C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements