Issue 9, 2020

Emerging triboelectric nanogenerators for ocean wave energy harvesting: state of the art and future perspectives

Abstract

A triboelectric nanogenerator (TENG) is a new energy harvester that converts small scale mechanical motions into electrical energy by a combination of triboelectrification and electrostatic induction through the periodic contact-separation and/or sliding movement between two tribo-materials with different abilities of gaining or losing electrical charges. This new approach to harvest mechanical energy can produce high power outputs capable of supplying equipment and sensors deployed in remote offshore locations and of supporting offshore activities whilst being able to be used in conjunction with traditional energy harvesting technologies. This review describes the fundamentals of TENGs and the existing energy harvesting modes, with focus on those more suitable for marine applications. Moreover, the equipment and offshore activities whose energy needs can be satisfied by TENGs are described and implementation schemes presented. We conclude that TENGs have high potential for numerous maritime applications, ranging from the demand of electronics used for metocean monitoring, signalling and surveillance, to activities such as offshore aquaculture or oil and gas exploration. The advantages of such systems as an alternative to currently existing solutions are also discussed, along with insights concerning applications that can take advantage of their high efficiency harvesting low amplitude and low frequency wave energy.

Graphical abstract: Emerging triboelectric nanogenerators for ocean wave energy harvesting: state of the art and future perspectives

Article information

Article type
Review Article
Submitted
21 Apr 2020
Accepted
14 Jul 2020
First published
14 Jul 2020

Energy Environ. Sci., 2020,13, 2657-2683

Emerging triboelectric nanogenerators for ocean wave energy harvesting: state of the art and future perspectives

C. Rodrigues, D. Nunes, D. Clemente, N. Mathias, J. M. Correia, P. Rosa-Santos, F. Taveira-Pinto, T. Morais, A. Pereira and J. Ventura, Energy Environ. Sci., 2020, 13, 2657 DOI: 10.1039/D0EE01258K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements