Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting

Author affiliations

Abstract

Developing energy- and time-saving methods to synthesize active and stable oxygen evolving catalysts is of great significance to hydrogen production from water electrolysis, which however remains a grand challenge. Here we report a one-step approach to grow highly porous S-doped Ni/Fe (oxy)hydroxide catalysts on Ni foam in several minutes under room temperature. This ultrafast method effectively engineers the surface of Ni foam into a rough S-doped Ni/Fe (oxy)hydroxide layer, which has multiple levels of porosity and good hydrophilic features and exhibits extraordinary oxygen evolution reaction (OER) performance in both alkaline salty water and seawater electrolytes. Specifically, the S-doped Ni/Fe (oxy)hydroxide catalyst requires low overpotentials of 300 and 398 mV to deliver current densities of 100 and 500 mA cm−2, respectively, when directly used as an OER catalyst in alkaline natural seawater electrolyte. Using this OER catalyst together with an efficient hydrogen evolution reaction catalyst, we have achieved the commercially demanded current densities of 500 and 1000 mA cm−2 at low voltages of 1.837 and 1.951 V, respectively, for overall alkaline seawater electrolysis at room temperature with very good durability. This work affords a cost-efficient surface engineering method to steer commercial Ni foam into robust OER catalysts for seawater electrolysis, which has important implications for both the hydrogen economy and environmental remediation.

Graphical abstract: Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting

Back to tab navigation

Supplementary files

Article information


Submitted
25 Mar 2020
Accepted
02 Jun 2020
First published
02 Jun 2020

Energy Environ. Sci., 2020, Advance Article
Article type
Paper

Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting

L. Yu, L. Wu, B. McElhenny, S. Song, D. Luo, F. Zhang, Y. Yu, S. Chen and Z. Ren, Energy Environ. Sci., 2020, Advance Article , DOI: 10.1039/D0EE00921K

Social activity

Search articles by author

Spotlight

Advertisements