Jump to main content
Jump to site search

Issue 10, 2020
Previous Article Next Article

Graphene-nanoplatelets-supported NiFe-MOF: high-efficiency and ultra-stable oxygen electrodes for sustained alkaline anion exchange membrane water electrolysis

Author affiliations

Abstract

Practical hydrogen production using high-efficiency, low-cost, and stable oxygen electrodes is crucial for a sustainable clean energy future. Herein we report a graphene-nanoplatelets-supported (Ni,Fe) metal–organic framework (MOF) as a superior and ultra-durable (>1000 h) anode for alkaline water electrolysis. The MOF on carbon-fiber paper electrodes requires an overpotential η = 220 mV to achieve a current density j = 10 mA cm−2 (η = 180 mV on nickel foam for j = 20 mA cm−2) with a Tafel slope of 51 mV per decade, high turnover frequency (1.22 s−1), high faradaic efficiency (99.1%), and long-term durability of >1000 h in continuous electrolysis. In an alkaline anion exchange membrane water electrolyzer (AAEMWE), it exhibits a record current density of 540 mA cm−2 at 1.85 V at 70 °C, outperforming the state-of-the-art Pt/C//IrO2. A breakthrough strategy introduced in membrane electrode assembly fabrication by extending the electrical contact with an aqueous electrolyte offers an additional OH transport pathway to regenerate the original conductivity of the AAEMWE in continuous electrolysis, without any significant change in the pH of the electrolyte. These findings open up durable, high-performance AAEMWE and direct solar-to-fuel conversion, especially to replace high-cost proton exchange membrane water electrolysis that already works with ultra-pure water.

Graphical abstract: Graphene-nanoplatelets-supported NiFe-MOF: high-efficiency and ultra-stable oxygen electrodes for sustained alkaline anion exchange membrane water electrolysis

Back to tab navigation

Supplementary files

Article information


Submitted
19 Mar 2020
Accepted
27 May 2020
First published
27 May 2020

Energy Environ. Sci., 2020,13, 3447-3458
Article type
Paper

Graphene-nanoplatelets-supported NiFe-MOF: high-efficiency and ultra-stable oxygen electrodes for sustained alkaline anion exchange membrane water electrolysis

P. Thangavel, M. Ha, S. Kumaraguru, A. Meena, A. N. Singh, A. M. Harzandi and K. S. Kim, Energy Environ. Sci., 2020, 13, 3447
DOI: 10.1039/D0EE00877J

Social activity

Search articles by author

Spotlight

Advertisements