Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Energy harvesting from shadow-effect

Author affiliations

Abstract

Shadows are everywhere. Not much engineering use has been found for shadows, and this ubiquitous effect is strenuously avoided in optoelectronic applications. In this work, we present a shadow-effect energy generator (SEG) that scavenges the illumination contrast that arises on the device from shadow castings, and generates a direct current, simply by placing a part of the generator in shadow. The shadow-effect mechanism is experimentally validated by Kelvin Probe Force Microscopy (KPFM). The SEG is capable of harvesting energy from illumination contrasts arising under weak ambient light. Without any optimization, our generator has a power density of 0.14 μW cm−2 under indoor conditions 0.001 sun, where shadows are persistent. Our SEG performs 200% better than that of commercial silicon solar cells under the effects of shadows. The harvested energy from our generator in the presence of shadows arising at a very low intensity (0.0025 sun) can drive an electronic watch (1.2 V). In addition, the SEG can serve as a self-powered sensor for monitoring moving objects by tracking the movement of shadows. With its cost-efficiency, simplicity and stability, our SEG offers a promising architecture to generate green energy from ambient conditions to power electronics, and as a part of a smart sensor systems, especially in buildings.

Graphical abstract: Energy harvesting from shadow-effect

Back to tab navigation

Supplementary files

Article information


Submitted
15 Mar 2020
Accepted
15 Apr 2020
First published
15 Apr 2020

Energy Environ. Sci., 2020, Advance Article
Article type
Communication

Energy harvesting from shadow-effect

Q. Zhang, Q. Liang, D. K. Nandakumar, S. K. Ravi, H. Qu, L. Suresh, X. Zhang, Y. Zhang, L. Yang, A. T. S. Wee and S. C. Tan, Energy Environ. Sci., 2020, Advance Article , DOI: 10.1039/D0EE00825G

Social activity

Search articles by author

Spotlight

Advertisements