Jump to main content
Jump to site search


Chemical Looping Beyond Combustion – A Perspective

Abstract

As a promising approach for carbon dioxide capture, chemical looping combustion has been extensively investigated for more than two decades. However, the chemical looping strategy can be and has been extended well beyond carbon capture. In fact, significant impacts on emission reduction, energy conservation, and value-creation can be anticipated from chemical looping beyond combustion (CLBC). This article aims to demonstrate the versatility and transformational benefits of CLBC. Specifically, we focus on the use of oxygen carriers or redox catalysts for chemical production – a $4 trillion industry that consumes 40.9 quadrillion BTU of energy. Compared to state-of-the-art chemical production technologies, we illustrate that chemical looping offers significant opportunities for process intensification and exergy loss minimization. In many cases, an order of magnitude reduction in energy consumption and CO2 emission can be realized without the needs for carbon dioxide capture. In addition to providing various CLBC examples, this article elaborates on generalized design principles for CLBC, potential benefits and pitfalls, as well as redox catalyst selection, design, optimization, and redox reaction mechanism.

Back to tab navigation

Article information


Submitted
23 Nov 2019
Accepted
08 Jan 2020
First published
13 Jan 2020

Energy Environ. Sci., 2020, Accepted Manuscript
Article type
Perspective

Chemical Looping Beyond Combustion – A Perspective

X. Zhu, F. Donat, Q. Imtiaz, C. R. Müller and F. Li, Energy Environ. Sci., 2020, Accepted Manuscript , DOI: 10.1039/C9EE03793D

Social activity

Search articles by author

Spotlight

Advertisements