Jump to main content
Jump to site search


Covalent fixing of sulfur in metal-sulfur batteries

Abstract

With its earth abundance and two-electron-transfer reaction mechanism, sulfur has been driving the rapid growth of metal-sulfur batteries. The practical performance of metal-sulfur batteries, however, is restricted by the notorious electrode processes of sulfur (such as low conductivity, intermediate loss, mass crossover, etc.). Sulfur conversion reactions can be stabilized and promoted through surface immobilization strategy via physical confinement and chemical adsorption effects. As an emerging method in the field, covalent-bonding sulfur materials have demonstrated promising for metal-sulfur batteries. The covalent fixing of sulfur reinforces the molecular interactions between sulfur and cathode matrix into the bulk level. In this review, we attempt to address the covalent fixing concept on the basis of the emerging studies related to covalent sulfur-containing compounds and composites in various rechargeable metal-sulfur batteries. Firstly, we briefly discuss the classification of sulfur fixing strategies and identify the uniqueness of covalently stabilized sulfur for metal-sulfur batteries. Secondly, we summarize the-state-of-the-art covalent sulfur-based materials as well as their synthetic chemistry. Thirdly, we focus on lithium-sulfur batteries that feature cathodes with covalent sulfur active materials, including reaction mechanisms and material innovations. Advances in alternative alkaline metal-sulfur battery systems (sodium-sulfur and potassium-sulfur) involving covalent fixing of sulfur are also discussed. Finally, the prospective opportunities of applying covalent fixing strategy to optimize the sulfur redox process are commented. This contribution is anticipated to place the covalent fixing sulfurs into the spotlight and to encourage more efforts to this challenging cross-disciplinary area of organic/polymer chemistry, materials science, electrochemistry and energy technologies.

Back to tab navigation

Article information


Submitted
22 Oct 2019
Accepted
03 Jan 2020
First published
08 Jan 2020

Energy Environ. Sci., 2020, Accepted Manuscript
Article type
Review Article

Covalent fixing of sulfur in metal-sulfur batteries

R. Fang, J. Xu and D. Wang, Energy Environ. Sci., 2020, Accepted Manuscript , DOI: 10.1039/C9EE03408K

Social activity

Search articles by author

Spotlight

Advertisements