Issue 39, 2020

DFT studies of two-electron oxidation, photochemistry, and radical transfer between metal centres in the formation of platinum(iv) and palladium(iv) selenolates from diphenyldiselenide and metal(ii) reactants

Abstract

The oxidant diphenyldiselenide reacts with MIIMe2(bipy) (bipy = 2,2′-bipyridine) to form a pre-equilibrium involving weak adducts, from which [MMe2(bipy)]2·Ph2Se2 undergoes rate-limiting dissociation of phenylselenide preceded by the oxidative addition step to obtain [Me2(bipy)M-MMe2(bipy)(SePh)]+. Coordination of PhSe gives the neutral MIII–MIII bonded dimers [MMe2(bipy)(SePh)]2. The dimers fragment in the presence of light to give radicals [MIIIMe2(bipy)(SePh)]˙. After reorientation in the solvent cage, the radicals interact to form triplet adducts [MIIIMe2(bipy)(SePh)·(bipy)MIIIMe2(SePh)]˙˙ with π-stacked ‘SePh·bipy’, followed by transformation via a Minimum Energy Crossing Point allowing [SePh]˙ transfer to give MIIMe2(bipy) and MIVMe2(bipy)(SePh)2. The regenerated MII reagent reacts with Ph2Se2 through the above sequence, allowing completion of reaction to give the MIV product only. The reaction of PtMe2(bipy) with diphenyldisulfide has been studied in an analogous manner to assist with interpretation of DFT results for reactions of diphenyldiselenide. In short, this study shows that photochemical cleavage of metal–metal bonds (Pd, Pt) via excitation to an M–M antibonding orbital facilates disproportionation of the MIII–MIII complex to MII and MIV complexes.

Graphical abstract: DFT studies of two-electron oxidation, photochemistry, and radical transfer between metal centres in the formation of platinum(iv) and palladium(iv) selenolates from diphenyldiselenide and metal(ii) reactants

Supplementary files

Article information

Article type
Paper
Submitted
25 Aug 2020
Accepted
16 Sep 2020
First published
17 Sep 2020

Dalton Trans., 2020,49, 13566-13572

DFT studies of two-electron oxidation, photochemistry, and radical transfer between metal centres in the formation of platinum(IV) and palladium(IV) selenolates from diphenyldiselenide and metal(II) reactants

A. J. Canty, A. Ariafard and R. J. Puddephatt, Dalton Trans., 2020, 49, 13566 DOI: 10.1039/D0DT02978E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements