Issue 38, 2020

Development of novel ruthenium(ii)–arene complexes displaying potent anticancer effects in glioblastoma cells

Abstract

Glioblastomas (GBs) are highly aggressive and malignant brain tumors, which are highly resistant to conventional multimodal treatments, leading to their abysmal prognosis. Herein, we designed two organometallic half-sandwich Ru(II)-η6-p-cymene complexes containing Schiff bases derived from 3-aminoquinoline and 2-hydroxy-benzaldehyde (L1) and 2-hydroxy-naphthaldehyde (L2), namely [Ru(η6-p-cymene)(L1)Cl] (1) and [Ru(η6-p-cymene)(L2)Cl] (2), respectively, and studied their activity on GB cells. Both complexes were structurally characterized using single-crystal X-ray diffraction, which exhibited their half-sandwich three-legged piano-stool geometry. Furthermore, we studied their physicochemical behavior, solution speciation, aquation kinetics, and photo-substitution reactions using various spectroscopic methods. The complexes exhibited a moderate binding affinity with calf-thymus (CT)-DNA (Kb ∼ 105 M−1). The complexes effectively interacted with human serum albumin (HSA) (K ∼ 105 M−1) with preferential tryptophan binding, as determined via synchronous fluorescence studies. The in vitro studies showed their significant antiproliferative activity against an aggressive human GB cell line, LN-229 (IC50 = 22.8 μM), with moderate selectivity relative to normal mouse fibroblast L929 cells. Notably, [Ru(η6-p-cymene)(L1)Cl] (1) exhibited a higher selectivity index (S.I.) than [Ru(η6-p-cymene)(L2)Cl] (2) and cisplatin. We evaluated the clonogenic potential of the GB cells using a colony formation assay in the presence of complex 1. Excitingly, it showed ∼75% inhibition of the clonogenic potential of GB cells at the IC50 concentration. Complex 1 also effectively lowered the migratory potential of the GB cells, as assessed by the wound healing assay. The studied compound led to the apoptosis of GB cells, as evidenced by nuclear condensation, blebbing, and enhanced caspase 3/7 activity, and thus has anticipated utility in the treatment of GBs using photochemotherapy.

Graphical abstract: Development of novel ruthenium(ii)–arene complexes displaying potent anticancer effects in glioblastoma cells

Supplementary files

Article information

Article type
Paper
Submitted
18 Jun 2020
Accepted
27 Aug 2020
First published
27 Aug 2020

Dalton Trans., 2020,49, 13294-13310

Development of novel ruthenium(II)–arene complexes displaying potent anticancer effects in glioblastoma cells

P. Kumar, I. Mondal, R. Kulshreshtha and A. K. Patra, Dalton Trans., 2020, 49, 13294 DOI: 10.1039/D0DT02167A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements