Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Degradable pH-responsive NIR-II imaging probes based on a polymer-lanthanide composite for chemotherapy

Author affiliations

Abstract

In this research, a pH-sensitive degradable nanoprobe was designed by combining hydrophobic rare earth nanoparticles with biocompatible mPEG-PLGA nanomicelles for near infrared II (NIR-II) imaging-guided anti-tumor chemotherapy. The as-synthesized nanoprobes (about 300 nm) with a highly enhanced permeability and retention (EPR) effect show great potential in the diagnosis of solid tumors, providing new prospects for clinical tumor diagnosis. Then, the degradable composite probes increase the imaging sensitivity of the probe and allow for the slow release of the internal anti-tumor drugs, reducing the loss of the drug during delivery. Finally, ultra-small rare earth nanoparticles (about 6 nm) can be excreted after hydrolysis of the composite probe to reduce the enrichment of the inorganic nanoparticles in vivo. Thus, this degradable NIR-II imaging probe based on a polymer-lanthanide composite could be a promising candidate for preclinical cancer chemotherapy and surgery navigation under a single 808 nm laser.

Graphical abstract: Degradable pH-responsive NIR-II imaging probes based on a polymer-lanthanide composite for chemotherapy

Back to tab navigation

Supplementary files

Article information


Submitted
08 Jun 2020
Accepted
16 Jun 2020
First published
19 Jun 2020

Dalton Trans., 2020, Advance Article
Article type
Paper

Degradable pH-responsive NIR-II imaging probes based on a polymer-lanthanide composite for chemotherapy

M. Feng, Y. Wang, B. Lin, X. Peng, Y. Yuan, X. Tao and R. Lv, Dalton Trans., 2020, Advance Article , DOI: 10.1039/D0DT02042G

Social activity

Search articles by author

Spotlight

Advertisements