Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 26, 2020
Previous Article Next Article

An efficient way of increasing the total entropy of mixing in high-entropy-alloy compounds: a case of NaCl-type (Ag,In,Pb,Bi)Te1−xSex (x = 0.0, 0.25, 0.5) superconductors

Author affiliations

Abstract

We propose an efficient way of increasing the entropy of mixing in high-entropy-alloy-type compounds, which can be achieved by multi-site alloying. As an example of this concept, we report the synthesis and observation of polycrystalline samples of new high-entropy-alloy-type metal chalcogenides (Ag,In,Pb,Bi)Te1−xSex (x = 0.0, 0.25, and 0.5) with a NaCl-type structure. The samples were synthesized using high pressure synthesis. Superconductivity with transition temperatures of 2.7, 2.5, and 2.0 K was observed with x = 0.0, 0.25, and 0.5, respectively. To investigate the multi-site alloying effect on the entropy of mixing (ΔSmix) for the examined samples, we calculated the total ΔSmix for two crystallographic sites. For the samples with x = 0.25 and 0.5, ΔSmix reaches 1.89R and 2.00R, respectively, which exceed the ΔSmix of 1.79R for a simple (single-site) high-entropy alloy containing six different elements.

Graphical abstract: An efficient way of increasing the total entropy of mixing in high-entropy-alloy compounds: a case of NaCl-type (Ag,In,Pb,Bi)Te1−xSex (x = 0.0, 0.25, 0.5) superconductors

Back to tab navigation

Supplementary files

Article information


Submitted
26 May 2020
Accepted
09 Jun 2020
First published
23 Jun 2020

Dalton Trans., 2020,49, 9118-9122
Article type
Paper

An efficient way of increasing the total entropy of mixing in high-entropy-alloy compounds: a case of NaCl-type (Ag,In,Pb,Bi)Te1−xSex (x = 0.0, 0.25, 0.5) superconductors

A. Yamashita, R. Jha, Y. Goto, T. D. Matsuda, Y. Aoki and Y. Mizuguchi, Dalton Trans., 2020, 49, 9118
DOI: 10.1039/D0DT01880E

Social activity

Search articles by author

Spotlight

Advertisements