Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Probing the limits of linker substitution in aluminum MOFs through water vapor sorption studies: mixed-MOFs instead of mixed-linker CAU-23 and MIL-160 materials

Author affiliations

Abstract

We report a systematic study on the possibility of forming mixed-linker metal–organic frameworks (MOFs) spanning between the aluminum MOFs CAU-23 and MIL-160 with their 2,5-thiophenedicarboxylate (TDC) and 2,5-furandicarboxylate (FDC) linkers, respectively. The planned synthesis of a mixed-linker MOF, combining TDC and FDC in the framework turned out to yield a rather largely intricate mixture of CAU-23 and MIL-160. This is due to the different opening angles of 150° for TDC versus 120° for FDC and the concomitant cistrans versus cis-only OH-bridges in the infinite secondary building unit {Al(μ-OH)(O2C–)} chains. At the same time, the CAU-23 phase is accompanied by the polymorphic MIL-53-TDC phase with trans-only OH-bridges. The measurement of water vapor sorption isotherms was the method of choice to confirm the formation of mixed MOFs instead of mixed-linker phases. Thereby, the water sorption isotherms indicate the simultaneous formation of both MOF phases, albeit they do not exclude mixed-linker MOFs which may have formed at low levels of substitution. The differentiation via powder X-ray diffractometry (PXRD), IR-spectroscopy and nitrogen sorption was either not conclusive enough or impossible, due to similarities of the neat MOF phases. The synthesized MOF mixtures within the TDC : FDC ratios of 38 : 62 up to 82 : 18 exhibit two or three uptake steps in the water sorption isotherm, with the first two corresponding to an overlay from the individual water sorption isotherm of CAU-23 and MIL-160 and a third one from the additional MIL-53-TDC.

Graphical abstract: Probing the limits of linker substitution in aluminum MOFs through water vapor sorption studies: mixed-MOFs instead of mixed-linker CAU-23 and MIL-160 materials

Back to tab navigation

Supplementary files

Article information


Submitted
19 Mar 2020
Accepted
04 May 2020
First published
05 May 2020

Dalton Trans., 2020, Advance Article
Article type
Paper

Probing the limits of linker substitution in aluminum MOFs through water vapor sorption studies: mixed-MOFs instead of mixed-linker CAU-23 and MIL-160 materials

C. Schlüsener, D. N. Jordan, M. Xhinovci, T. J. Matemb Ma Ntep, A. Schmitz, B. Giesen and C. Janiak, Dalton Trans., 2020, Advance Article , DOI: 10.1039/D0DT01044H

Social activity

Search articles by author

Spotlight

Advertisements