Enhanced photoluminescence and ferro/piezoelectric performance in piezo-luminescent materials with outstanding water resistance and thermal stability
Abstract
Sm3+-Modified (1 − x)Na0.5Bi0.5TiO3-xCaTiO3 (NBT-xCT:Sm3+) piezo-luminescent ceramic materials were synthesized to investigate the influence of CaTiO3 (CT) concentration on their photoluminescence and electrical performance. Under 480 nm irradiation, the NBT-xCT:Sm3+ samples exhibit prominent orange-red emission, with a prime emission peak centered at 597 nm. A moderate amount of CT doping in the Sm3+-modified NBT ceramics boosts both their photoluminescence and piezoelectric properties significantly, with NBT-0.04CT:Sm3+ showing the optimal performance. Furthermore, outstanding luminescence thermal stability over a temperature range of 293–473 K and superior water resistance behavior are achieved in the NBT-0.04CT:Sm3+ ceramic. These results indicate that NBT-xCT:Sm3+ piezo-luminescent ceramics show great potential applications in white LEDs, as well as novel optical-electronic multifunctional devices.