Jump to main content
Jump to site search

Issue 14, 2020
Previous Article Next Article

Bimetallic PtAu electrocatalysts for the oxygen reduction reaction: challenges and opportunities

Author affiliations

Abstract

Highly active, durable oxygen reduction reaction (ORR) electrocatalysts have an essential role in promoting the continuous operation of advanced energy technologies such as fuel cells and metal–air batteries. Considering the scarce reserve of Pt and its unsatisfactory overall performance, there is an urgent demand for the development of new generation ORR electrocatalysts that are substantially better than the state-of-the-art supported Pt-based nanocatalysts, such as Pt/C. Among various nanostructures, bimetallic PtAu represents one unique alloy system where highly contradictory performance has been reported. While it is generally accepted that Au may contribute to stabilizing Pt, its role in modulating the intrinsic activity of Pt remains unclear. This perspective will discuss critical structural issues that affect the intrinsic ORR activities of bimetallic PtAu, with an eye on elucidating the origin of seemingly inconsistent experimental results from the literature. As a relatively new class of electrodes, we will also highlight the performance of dealloyed nanoporous gold (NPG) based electrocatalysts, which allow a unique combination of structural properties highly desired for this important reaction. Finally, we will put forward the challenges and opportunities for the incorporation of these advanced electrocatalysts into membrane electrode assemblies (MEA) for actual fuel cells.

Graphical abstract: Bimetallic PtAu electrocatalysts for the oxygen reduction reaction: challenges and opportunities

Back to tab navigation

Article information


Submitted
17 Jan 2020
Accepted
24 Feb 2020
First published
24 Feb 2020

Dalton Trans., 2020,49, 4189-4199
Article type
Perspective

Bimetallic PtAu electrocatalysts for the oxygen reduction reaction: challenges and opportunities

S. Yin and Y. Ding, Dalton Trans., 2020, 49, 4189
DOI: 10.1039/D0DT00205D

Social activity

Search articles by author

Spotlight

Advertisements