Jump to main content
Jump to site search


Ligand-based electronic effects on the electrocatalytic hydrogen production by thiosemicarbazone nickel complexes

Author affiliations

Abstract

This work reports on the synthesis and characterization of a series of mononuclear thiosemicarbazone nickel complexes that display significant catalytic activity for hydrogen production in DMF using trifluoroacetic acid as the proton source. The ligand framework was chemically modified by varying the electron-donating abilities of the para substituents on the phenyl rings, which was expected to impact the capability of the resulting complexes to reduce protons into hydrogen. Over the four nickel complexes that were obtained, the one with the thiomethyl substituent, NiSCH3, was found to overtake the catalytic performances of the parent complex NiOCH3 featuring lower overpotential values and similar maximum turnover frequencies. These results confirm the electronic effects of the ligand on HER when using thiosemicarbazone nickel complexes and support that chemical modifications can tune the catalytic performances of such systems.

Graphical abstract: Ligand-based electronic effects on the electrocatalytic hydrogen production by thiosemicarbazone nickel complexes

Back to tab navigation

Supplementary files

Article information


Submitted
16 Dec 2019
Accepted
04 Mar 2020
First published
06 Mar 2020

Dalton Trans., 2020, Advance Article
Article type
Paper

Ligand-based electronic effects on the electrocatalytic hydrogen production by thiosemicarbazone nickel complexes

M. Papadakis, A. Barrozo, T. Straistari, N. Queyriaux, A. Putri, J. Fize, M. Giorgi, M. Réglier, J. Massin, R. Hardré and M. Orio, Dalton Trans., 2020, Advance Article , DOI: 10.1039/C9DT04775A

Social activity

Search articles by author

Spotlight

Advertisements