Jump to main content
Jump to site search

A Narrow-band Ultra-bright Green Phosphor for LED-based Applications


The novel Sr2MgB2O6 (SMBO) green-emitting phosphor co-doped with Ce3+- Tb3+ was synthesized at 950℃ by solid-state reactions, and the ultra-narrow-band green emission of Tb3+ was significantly enhanced almost 20 times via energy transfer from Ce3+ to Tb3+. It was found to have a broad excitation band (250~400nm), and the full width at half-maximum (FWHM) of the dominant green emission band around 544 nm was only about 10 nm. The electronic band gap of SMBO matrix is calculated by density functional theory (DFT) to be 4.60 eV, and is well verified by diffuse reflection spectra results. Furthermore, the composition-optimized phosphor SMBO: 0.05Ce3+,0.05Tb3+ exhibits an excellent thermal quenching resistance (75.3% intensity at 423 K) and relatively high external quantum efficiency (EQE = 48.92%). Finally, two white light-emitting diodes (WLEDs) packages have been fabricated via combining a 365 nm n-UV chip, the optimal sample and the commercial blue and red phosphors to assess the application potential of the phosphors. The test results indicate that the obtained WLEDs-1 fabricated with K2SiF6: Mn4+ has an outstanding color rendering index (Ra = 85.7) and Commission Internationale de L’Eclairage (CIE) coordinates (0.3242, 0.3334). Meanwhile, the color gamut can reach 87% of National Television Standards Committee (NTSC) in CIE 1931. The WLEDs-2 fabricated with red emitting CaAlSiN3: Eu2+ produced warm white light with color coordinates of (0.3792, 0.3810), high color rendering index of 82.3, and low correlated color temperature of 4065K. These results revealed its broad prospects for LED-based applications.

Back to tab navigation

Supplementary files

Article information

19 Oct 2019
06 Jan 2020
First published
07 Jan 2020

Dalton Trans., 2020, Accepted Manuscript
Article type

A Narrow-band Ultra-bright Green Phosphor for LED-based Applications

Q. Dong, J. Yang, J. Cui, F. Xu, F. Yang, J. Peng, F. Du, X. Ye and S. Yang, Dalton Trans., 2020, Accepted Manuscript , DOI: 10.1039/C9DT04092G

Social activity

Search articles by author