Jump to main content
Jump to site search


Structural variability of pendant groups within the interlayer region of zirconium arene-phosph(on)ates: chemical and structural characterization of oxy- and methyl-linked 2-naphthyl phosphonates, and mixed oxy-linked derivatives

Author affiliations

Abstract

Several new zirconium phosphonates incorporating the naphthalene ring and having the general formula Zr(O3PR)1(O3PR′)1 [R and R′ = –CH2C10H7, –OC10H7, –CH3, –OC2H5, –OH] have been synthesized. These materials were chemically characterized using thermal gravimetric analysis (percentage of organic content), infrared spectroscopy (presence of the desired organic functional groups), and solid-state 31P NMR (phosphorus environments), while the structural parameters were determined using X-ray powder diffraction (interlayer d spacings). The two new zirconium bis(phosphonates), Zr(O3PC10H7)2 and Zr(O3PCH2C10H7)2, were found to have d spacings of 19.6 and 20.0 Å, respectively. Three of the four zirconium mixed phosphonates examined are found to be single-phase structures with random mixtures of the organic moieties within the interlayer, and possess d spacings (14.3, 15.3, and 16.1 Å) that are between those of the two parent zirconium bis(phosphonates). The fourth is found to be a staged or segregated structure and possesses a d spacing that is approximately a sum of the two parent zirconium bis(phosphonates), with a d spacing of 28.2 Å. Solid-state 31P NMR of Zr(O3PCH2C10H7)2 revealed the presence of two isotropic resonances, which is interpreted in terms of two distinct, “locked-in” conformations of the –CH2C10H7 group. The experimental d spacings of the zirconium bis(phosphonates) correlate well with a simple predictive model based on the effective length and predominant conformation of the organic functional group.

Graphical abstract: Structural variability of pendant groups within the interlayer region of zirconium arene-phosph(on)ates: chemical and structural characterization of oxy- and methyl-linked 2-naphthyl phosphonates, and mixed oxy-linked derivatives

Back to tab navigation

Supplementary files

Article information


Submitted
30 Sep 2019
Accepted
01 Dec 2019
First published
03 Dec 2019

Dalton Trans., 2020, Advance Article
Article type
Paper

Structural variability of pendant groups within the interlayer region of zirconium arene-phosph(on)ates: chemical and structural characterization of oxy- and methyl-linked 2-naphthyl phosphonates, and mixed oxy-linked derivatives

J. C. Amicangelo and W. R. Leenstra, Dalton Trans., 2020, Advance Article , DOI: 10.1039/C9DT03875B

Social activity

Search articles by author

Spotlight

Advertisements