Jump to main content
Jump to site search


High performance MIL-101(Cr)@6FDA-mPD and MOF-199@6FDA-mPD mixed-matrix membranes for CO2/CH4 separation

Abstract

Combination of the polyimide 6FDA-mPD (6FDA = 4,4’-hexafluoroisopropylidene diphthalic anhydride and mPD = m-phenylenediamine) and crystallites of the metal-organic frameworks (MOFs) MIL-101(Cr) or MOF-199 (HKUST-1, Cu-BTC) produces mixed-matrix membranes (MMMs) with excellent dispersion and compatibility of the MOF particles within the polymer matrix. Permeation tests of a binary CO2/CH4 (50/50) gas mixture showed a remarkable increase of CO2 permeabilities MIL-101(Cr)@6FDA-mPD and significant higher selectivities for MOF-199@6FDA-mPD. The CO2 permeability increased from 10 (neat polymer) to 50 Barrer for the 24 wt% MIL-101(Cr)@6FDA-mPD membrane (with essentially constant selectivity) due to the high pore volume of MIL-101(Cr). The CO2/CH4 selectivity increased from 54 to 89 from the neat 6FDA-mPD polymer to the 24 wt% MOF-199@6FDA-mPD membrane, apparently due to the high CO2 adsorption capacity of MOF-199.

Back to tab navigation

Supplementary files

Article information


Submitted
07 Aug 2019
Accepted
13 Jan 2020
First published
14 Jan 2020

Dalton Trans., 2020, Accepted Manuscript
Article type
Paper

High performance MIL-101(Cr)@6FDA-mPD and MOF-199@6FDA-mPD mixed-matrix membranes for CO2/CH4 separation

A. Nuhnen, M. Klopotowski, H. B. Tanh Jeazet, S. Sorribas, B. Zornoza Encabo, C. Téllez Ariso, J. Coronas and C. Janiak, Dalton Trans., 2020, Accepted Manuscript , DOI: 10.1039/C9DT03222C

Social activity

Search articles by author

Spotlight

Advertisements