Jump to main content
Jump to site search

Issue 12, 2020
Previous Article Next Article

Rationally designed trimetallic Prussian blue analogues on LDH/Ni foam for high performance supercapacitors

Author affiliations

Abstract

Rational design of a Prussian blue analogue (PBA)@Ni–Co layered double hydroxide (NiCo-LDH) nanocomposite electrode material is vitally important for synthesizing high-performance supercapacitor electrodes. In this work, such nanocomposite electrode materials were successfully fabricated by a facile hydrothermal method. Firstly, three-dimensional (3D) regulated NiCo-LDH nanosheets with high interlayer space were grown on nickel foam under mild synthetic conditions. Then these nanosheets as a precursor were in situ converted into the target PBA@NiCo-LDH/NF nanocomposite electrode by a facile thermal ion-exchange reaction with potassium ferricyanide (K3[Fe(CN)6]). A series of PBA@NiCo-LDH/NF nanocomposite electrodes were fabricated with different ratios of Ni and Co and reaction temperatures. Their structures and morphologies were characterized by X-ray diffraction (XRD), FT-IR and scanning electron microscopy (SEM). Electrochemical investigation reveals that the PBA@Ni0.4Co0.6-LDH electrode exhibits the best electrochemical performance with an area specific capacitance of 2004.26 mF cm−2 at 1 mA cm−2, which is much higher (about three times) than the properties of each single component. All results demonstrate that (1) high-performance composite electrodes can be effectively fabricated and (2) fabrication of such composites is highly necessary and important.

Graphical abstract: Rationally designed trimetallic Prussian blue analogues on LDH/Ni foam for high performance supercapacitors

Back to tab navigation

Supplementary files

Article information


Submitted
20 Jun 2019
Accepted
02 Sep 2019
First published
03 Sep 2019

Dalton Trans., 2020,49, 3706-3714
Article type
Paper

Rationally designed trimetallic Prussian blue analogues on LDH/Ni foam for high performance supercapacitors

C. Chen, S. Wang, D. Xiong, M. Gu and F. Yi, Dalton Trans., 2020, 49, 3706
DOI: 10.1039/C9DT02598G

Social activity

Search articles by author

Spotlight

Advertisements