Issue 14, 2020

Understanding the effect of interfacial interaction on metal/metal oxide electrocatalysts for hydrogen evolution and hydrogen oxidation reactions on the basis of first-principles calculations

Abstract

Understanding the interfacial interaction between metals (M) and transition metal oxide (TMO) supports is essential for the material design of high performance electrocatalysts. In this study, we constructed Pt/TiO2 composite models with interfacial Pt–Ti and Pt–O bonds respectively, to clarify the interface effect on electronic structures, species adsorption/desorption and migration properties, and HER and HOR mechanisms through first-principles calculations. Interfacial Pt–Ti metallic interaction causes more delocalized electrons on the Pt cluster, which strengthens H and OH adsorption, facilitating *H migration and H2O dissociation. Meanwhile interfacial Pt–O covalent interaction affects the localized electronic structure of Pt with deficient electrons, which results in optimum H adsorption/desorption and complicated *H migration processes. The interface sites and non-interface sites jointly provide an efficient H migration channel and reaction pathway. For the HER, the Pt–O interaction benefits the Tafel step, and the Pt–Ti interaction is favorable for the Volmer step. For the HOR, the Pt–O interaction contributes to a higher HOR activity and anti-oxidation ability than Pt–Ti. These results can serve as theoretical guidance for constructing high performance M/TMO electrocatalysts for the HER/HOR by regulating the interfacial bond type and proportion.

Graphical abstract: Understanding the effect of interfacial interaction on metal/metal oxide electrocatalysts for hydrogen evolution and hydrogen oxidation reactions on the basis of first-principles calculations

Supplementary files

Article information

Article type
Paper
Submitted
10 May 2020
Accepted
16 Jun 2020
First published
30 Jun 2020

Catal. Sci. Technol., 2020,10, 4743-4751

Understanding the effect of interfacial interaction on metal/metal oxide electrocatalysts for hydrogen evolution and hydrogen oxidation reactions on the basis of first-principles calculations

X. Zheng, L. Li, M. Deng, J. Li, W. Ding, Y. Nie and Z. Wei, Catal. Sci. Technol., 2020, 10, 4743 DOI: 10.1039/D0CY00960A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements