Issue 16, 2020

Palladium dispersion effects on wet methane oxidation kinetics

Abstract

The catalytic activity for dry and wet methane oxidation over a series of palladium–alumina catalysts with palladium loadings from 0.23 to 3.6 wt% Pd and systematically varied PdO dispersions from 8.1 to 39% was evaluated by flow reactor measurements and compared with multiscale simulations. The catalysts were prepared by industrially relevant incipient wetness impregnation followed by controlled calcination to provide similar active surface area with a realistic contact between active PdO nanoparticles and the alumina support. Kinetic analysis reveals that in wet conditions, the apparent activation energy for methane oxidation decreases as the PdO particle size increases as opposed to dry conditions where it increases. Active sites at the rim of the PdO particles in contact with the alumina support seem to contribute more to the overall activity under dry conditions but are more sensitive to wet conditions than PdO sites farther away from the rim. This sensitivity is likely due to more severe blocking by hydroxyl groups formed by water dissociation and reversed spillover. Simulations support that PdO bound hydroxyls well may form under the present reaction conditions. It is envisaged that the design of palladium–alumina catalysts for high methane turn-over frequency should target high but not too high PdO dispersion, i.e., the PdO particles should not be smaller than about 2 nm, as to balance water tolerance and palladium utilisation.

Graphical abstract: Palladium dispersion effects on wet methane oxidation kinetics

Supplementary files

Article information

Article type
Paper
Submitted
11 Apr 2020
Accepted
14 Jul 2020
First published
14 Jul 2020
This article is Open Access
Creative Commons BY-NC license

Catal. Sci. Technol., 2020,10, 5460-5469

Palladium dispersion effects on wet methane oxidation kinetics

P. Velin, C. Florén, M. Skoglundh, A. Raj, D. Thompsett, G. Smedler and P. Carlsson, Catal. Sci. Technol., 2020, 10, 5460 DOI: 10.1039/D0CY00734J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements