Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



pH universal Ru@N-doped carbon catalyst for efficient and fast hydrogen evolution

Author affiliations

Abstract

The development of efficient and cost-effective electrocatalysts for the hydrogen evolution reaction (HER) is of intense interest because H2 is one of the most promising renewable energy sources. Herein, we report a highly efficient and stable HER electrocatalyst composed of ruthenium nanoparticles embedded in nitrogen-doped carbon (NC), which is synthesized via a simple thermolysis process using a ruthenium complex as metal precusor and using ethylenediaminetetraacetic acid tetrasodium (Na4EDTA) salt as ligand and carbon source. It is found that the amount of Na4EDTA employed plays an important role in achieving sutiable and uniform Ru nanoparticles. The resulting Ru@NC(1 : 5) was found to exhibit excellent HER activity and robust stability in alkaline media (1.0 M KOH) with a low overpotential at 10 mA cm−2 (29 mV), small Tafel slope (27 mV per decade) and a high turnover frequency (TOF) of 0.96 s−1 at an overpotential of 50 mV, which are comparable to the state-of-the-art commercial Pt/C catalyst. Based on the characterization of the samples and the electrochemical measurements, this high performance of Ru@NC(1 : 5) is ascribed to its smallest particle size (ca. 2.1 nm diameter), large active site density and the high electrochemical conductivity by the N-doped carbon support. In addition, Ru@NC(1 : 5) also works well in acidic media (0.5 M H2SO4) indicating it is a pH-universal catalyst.

Graphical abstract: pH universal Ru@N-doped carbon catalyst for efficient and fast hydrogen evolution

Back to tab navigation

Supplementary files

Article information


Submitted
17 Dec 2019
Accepted
10 Jun 2020
First published
11 Jun 2020

This article is Open Access

Catal. Sci. Technol., 2020, Advance Article
Article type
Paper

pH universal Ru@N-doped carbon catalyst for efficient and fast hydrogen evolution

B. Zheng, L. Ma, B. Li, D. Chen, X. Li, J. He, J. Xie, M. Robert and T. Lau, Catal. Sci. Technol., 2020, Advance Article , DOI: 10.1039/C9CY02552A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements