Jump to main content
Jump to site search


Pd–Au bimetallic catalysts supported on ZnO for selective 1,3-butadiene hydrogenation

Author affiliations

Abstract

Bimetallic Pd–Au catalysts were synthesized using two differently shaped ZnO supports, ZnO-t (tetrapods) and ZnO-n (needles). These catalysts were tested in the partial hydrogenation of 1,3-butadiene and the results were compared to those for the corresponding monometallic catalysts of Pd. The structural and electronic properties of the catalysts were analysed by transmission electron microscopy and scanning transmission electron microscopy (TEM-STEM), Fourier transform infrared spectroscopy analysis of adsorbed CO (CO-FTIR), X-ray photoelectron spectroscopy (XPS) and in situ X-ray absorption spectroscopy (XAS) measurements combined with in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). On both catalysts, gold diffusion on the Pd(111) faces and formation of small Pd-rich particles and big Au-rich core/Pd-rich shell like structures were confirmed. Besides, both Pd–Au bimetallic samples gave similar conversion and selectivity values in the hydrogenation reaction. The product distribution resembled that for monometalic Pd on ZnO-t, except for the selectivity to 1-butene among the butenes which was slightly higher. The best catalyst in terms of selectivity to the butenes is Pd–ZnO-n. The differences found in the catalytic performance were analysed based on electronic and ensemble effects. In contrast to that found for the monometallic catalysts, the support morphology does not seem to be a determinant for the properties in the case of the Pd–Au bimetallic samples.

Graphical abstract: Pd–Au bimetallic catalysts supported on ZnO for selective 1,3-butadiene hydrogenation

Back to tab navigation

Supplementary files

Article information


Submitted
26 Nov 2019
Accepted
04 Mar 2020
First published
05 Mar 2020

This article is Open Access

Catal. Sci. Technol., 2020, Advance Article
Article type
Paper

Pd–Au bimetallic catalysts supported on ZnO for selective 1,3-butadiene hydrogenation

B. Bachiller-Baeza, A. Iglesias-Juez, G. Agostini and E. Castillejos-López, Catal. Sci. Technol., 2020, Advance Article , DOI: 10.1039/C9CY02395J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements