Jump to main content
Jump to site search


Mechanistic Insights into Cu-Catalyzed Enantioselective Friedel-Crafts Reaction between Indoles and 2-Aryl-N-sulfonylaziridines

Abstract

Computational studies were successfully carried out to provide mechanistic insights into LCu-catalyzed (L = (S)-Segphos ligand) Friedel-Crafts (F-C) reaction between indoles and 2-Aryl-N-sulfonylaziridines. The proposed enantioselective mechanistic roles for LCu-catalyzed F-C reaction were carefully considered: C−N bond cleavage through a three-membered ring transition state, C−C bond formation, oxidative addition, and reductive elimination. Through the energy decomposition analysis (EDA) on all possible transition states of the rate-determining step (RDS), the smaller ΔEdef(total) and the larger ΔEint were found in TS3R, resulting in the lowest activation energy (ΔE). In other words, the TS3R was the most kinetically favorable with the lowest activation barrier. Afterwards, the noncovalent interactions (C−H···π, π···π) and the steric effects were identified as playing a pivotal role in a favorable transition state for the C−C bond formation. In addition, the frontier molecular orbital (FMO) revealed that the smallest energy gap (5.2836 eV) between the highest occupied orbital (HOMO) and the lowest unoccupied orbital (LUMO) was found in TS3R.

Back to tab navigation

Supplementary files

Article information


Submitted
29 Sep 2019
Accepted
02 Jan 2020
First published
03 Jan 2020

Catal. Sci. Technol., 2020, Accepted Manuscript
Article type
Paper

Mechanistic Insights into Cu-Catalyzed Enantioselective Friedel-Crafts Reaction between Indoles and 2-Aryl-N-sulfonylaziridines

P. Wang, Y. Zhao, B. Chapagain , Y. Yang, W. Liu and Y. Wang, Catal. Sci. Technol., 2020, Accepted Manuscript , DOI: 10.1039/C9CY01967G

Social activity

Search articles by author

Spotlight

Advertisements