Direct catalytic asymmetric synthesis of α-chiral primary amines
Abstract
α-Chiral primary amines are one among the most valuable and versatile building blocks for the synthesis of numerous amine-containing pharmaceuticals and natural compounds. They also serve as chiral ligands or organo-catalysts for asymmetric catalysis. However, most of the existing chemocatalytic methods toward enantiopure primary amines rely on multistep manipulations on N-substituted substrates, which are not ideally atom-economical and cost-effective. Among the catalytic methods including the asymmetric transformations of the pre-prepared or in situ formed NH imines, biomimetic chemocatalysis inspired by enzymatic transaminations has recently emerged as an appealing and straightforward method to access chiral primary amines. This tutorial review highlights the state-of-the-art catalytic methods for the direct asymmetric synthesis of α-chiral primary amines and demonstrates their utility in the construction of molecular complexities, which may attract extensive attention and inspire applications in synthetic and medicinal chemistry.