Issue 10, 2020

Synthesis, optoelectronic properties and applications of halide perovskites

Abstract

Halide perovskites have emerged as a class of most promising and cost-effective semiconductor materials for next generation photoluminescent, electroluminescent and photovoltaic devices. These perovskites have high optical absorption coefficients and exhibit narrow-band bright photoluminescence, in addition to their halide-dependent tuneable bandgaps, low exciton binding energies, and long-range carrier diffusion. These properties make these perovskites superior to classical semiconductors such as silicon. Most importantly, the simple synthesis of perovskites in the form of high quality films, single crystals, nanocrystals and quantum dots has attracted newcomers to develop novel perovskites with unique optoelectronic properties for optical and photovoltaic applications. Here, we comprehensively review recent advances in the synthesis and optoelectronic properties of films, microcrystals, nanocrystals and quantum dots of lead halide and lead-free halide perovskites. Followed by the classification of synthesis, we address the ensemble and single particle properties of perovskites from the viewpoints of the confinement and transport of charge carriers or excitons. Further, we correlate the charge carrier properties of perovskite films, microcrystals, nanocrystals and quantum dots with the crystal structure and size, halide composition, temperature, and pressure. Finally, we illustrate the emerging applications of perovskites to solar cells, LEDs, and lasers, and discuss the ongoing challenges in the field.

Graphical abstract: Synthesis, optoelectronic properties and applications of halide perovskites

Article information

Article type
Tutorial Review
Submitted
05 Dec 2019
First published
27 Apr 2020

Chem. Soc. Rev., 2020,49, 2869-2885

Synthesis, optoelectronic properties and applications of halide perovskites

L. Chouhan, S. Ghimire, C. Subrahmanyam, T. Miyasaka and V. Biju, Chem. Soc. Rev., 2020, 49, 2869 DOI: 10.1039/C9CS00848A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements