Jump to main content
Jump to site search


Redox potentials along the redox-active low-barrier H-bonds in electron transfer pathways

Author affiliations

Abstract

Low-barrier H-bonds form when the pKa values of the H-bond donor and acceptor moieties are nearly equal. Here, we report redox potential (Em) values along two redox-active low-barrier H-bonds in the water-oxidizing enzyme photosystem II (PSII), using a quantum mechanical/molecular mechanical approach. The low-barrier H-bond between D1-Tyr161 (TyrZ) and D1-His190 is located in the middle of the electron transfer pathway. When the proton is at D1-His190, Em(TyrZ) is the lowest and can serve as an electron donor to the oxidized chlorophyll PD1˙+. Em(TyrZ) and Em(D1-His190) are equal, and the TyrZ⋯D1-His190 pair serves as an electron acceptor to Mn4CaO5 when the proton is at TyrZ. In the low-barrier H-bond between D1-His215 and plastoquinone QB, located at the terminus of the electron transfer pathway, the driving force of electron transfer and electronic coupling between QA and QB are maximized when the proton arrives at QB. It seems likely that local proton transfer along redox-active low-barrier H-bonds can alter the driving force or electronic coupling for electron transfer.

Graphical abstract: Redox potentials along the redox-active low-barrier H-bonds in electron transfer pathways

Back to tab navigation

Supplementary files

Article information


Submitted
11 Aug 2020
Accepted
14 Sep 2020
First published
15 Sep 2020

This article is Open Access

Phys. Chem. Chem. Phys., 2020, Advance Article
Article type
Paper

Redox potentials along the redox-active low-barrier H-bonds in electron transfer pathways

K. Saito, M. Mandal and H. Ishikita, Phys. Chem. Chem. Phys., 2020, Advance Article , DOI: 10.1039/D0CP04265J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements