Jump to main content
Jump to site search


Specific and Non-Specific Interactions between Metal Cation and Zwitterionic Alanine Tripeptide in Saline Solutions Reported by the Symmetric Carboxylate Stretching and Amide-II Vibrations

Abstract

The “specific” interaction between metal cations (Na+, Ca2+, Mg2+, and Zn2+) and the charged COO group, and the “non-specific” interaction between these cations and peptide backbone of a zwitterionic trialanine (Ala3) in aqueous solution were examined in detail, using linear infrared (IR) absorptions of the COO symmetric stretching and the amide-II (mainly the C-N stretching) modes as IR probes. Different IR spectral changes in peak positions and intensities of the two IR probes clearly demonstrate their sensitivities to nearby cation distributions in distnace and population. Quantum chemistry calculations and molecular dynamics simulations were used to describe the cation-peptide interaction picture. These combined results suggest that Na+ and Ca2+ tend to bind to the COO group in the bidentate form, while Mg2+ and Zn2+ tend to bind to the COO group in the pseudo-bridging form. The results also show that while all three divalent cations are indirectly interacting with peptide backbone with large population, Ca2+ and Mg2+ can be sometimes distributed very close to the backbone. Such a non-specific cation interaction can be moderately sensed by the C-N stretching of the amide-II mode when cations approach the polar amide C=O group, and is also influenced by the NH3+ charge group located at the N-terminus. The results suggest that experimentally observed complication of Hofmeister cation series shall be understood as a combined specific and non-specific cation - peptide interactions.

Back to tab navigation

Supplementary files

Article information


Submitted
11 Aug 2020
Accepted
08 Oct 2020
First published
09 Oct 2020

Phys. Chem. Chem. Phys., 2020, Accepted Manuscript
Article type
Paper

Specific and Non-Specific Interactions between Metal Cation and Zwitterionic Alanine Tripeptide in Saline Solutions Reported by the Symmetric Carboxylate Stretching and Amide-II Vibrations

J. zhao and J. Wang, Phys. Chem. Chem. Phys., 2020, Accepted Manuscript , DOI: 10.1039/D0CP04247A

Social activity

Search articles by author

Spotlight

Advertisements