Jump to main content
Jump to site search


True absolute determination of photoluminescence quantum yields by coupling multiwavelength thermal lens and photoluminescence spectroscopies

Abstract

Photoluminescence quantum yields denote a critical variable to characterise a fluorophore and its potential performance. Their determination, by means of methodologies employing reference standard materials, innevitably leads to large uncertainties. In response to this, herein we report for the first time an innovative and elegant methodology, whereby the use of neat solvent/reference material required by thermal lens approaches is eliminated by coupling it to photoluminescence spectroscopy, allowing for the discrimination between materials with similar photoluminescence quantum yields. To achieve that, both radiative and non-radiative transitions are simultaneously measured by means of a photoluminescence spectrometer coupled to a multiwavelength thermal lens spectroscopy setup in a mode-mismatched dual-beam configuration, respectively. The absorption factor independent ratio of the thermal lens and photoluminescence signals can then be used to determine the fluorescence quantum yield both accurately and precisely. We validated our reported method by means of rhodamine 6G and further applied in three novel structurally related diketopyrrolopyrrole based materials to, contrary to results obtained by other methods, unveil significant differences in their photoluminescence quantum yields.

Back to tab navigation

Supplementary files

Article information


Submitted
16 Jul 2020
Accepted
07 Oct 2020
First published
07 Oct 2020

Phys. Chem. Chem. Phys., 2020, Accepted Manuscript
Article type
Paper

True absolute determination of photoluminescence quantum yields by coupling multiwavelength thermal lens and photoluminescence spectroscopies

T. Pereira, M. Warzecha, L. H. da Cunha Andrade, J. R. Silva, M. L. Baesso, C. J. McHugh, J. Calvo-Castro and S. M. Lima, Phys. Chem. Chem. Phys., 2020, Accepted Manuscript , DOI: 10.1039/D0CP03794J

Social activity

Search articles by author

Spotlight

Advertisements