Issue 46, 2020

Myoglobin molecule charging in electrolyte solutions

Abstract

All atom molecular dynamic modeling was applied in order to determine water molecule and electrolyte ion concentration profiles around and inside the myoglobin molecule at various pH values. Significant penetration of counter ions into the molecule was confirmed. The electric potential distribution within and outside the molecule was quantitatively described using the non-linear Poisson–Boltzmann (PB) approach. Using this model, calculations were performed, yielding the surface and zeta potential for various physicochemical parameters, comprising pH, the electric permittivity, the ion penetration depth and the protein volume fraction (crowding effect). The theoretical results were used for the interpretation of experimental data acquired under different ionic strengths and temperatures by electrophoretic mobility measurements. It is confirmed that the experimental data are adequately reflected for acidic pH values by the non-linear PB model where the nominal molecule charge was calculated from the H++ model. The deviations occurring for larger pH values were accounted for by considering additional non-electrostatic interactions stemming from the van der Waals and ion-induced dipole forces. In this way, it is both experimentally and theoretically confirmed that the effective charge of the myoglobin molecule in electrolyte solutions is considerably smaller than the nominal, structure-based, predicted charge. As a result, under physiological conditions prevailing, e.g. in skeletal muscles, the effective charge of the myoglobin molecule should practically vanish. One can expect that the approach developed in this work can be applied for predicting charging mechanisms of other protein molecules characterized by an analogous charge vs. pH characteristic, e.g., the SARS-CoV-2 virus spike proteins, and for soft particles with pH responsive characteristics.

Graphical abstract: Myoglobin molecule charging in electrolyte solutions

Supplementary files

Article information

Article type
Paper
Submitted
15 Jul 2020
Accepted
21 Oct 2020
First published
18 Nov 2020

Phys. Chem. Chem. Phys., 2020,22, 26764-26775

Myoglobin molecule charging in electrolyte solutions

P. Batys, M. Nattich-Rak and Z. Adamczyk, Phys. Chem. Chem. Phys., 2020, 22, 26764 DOI: 10.1039/D0CP03771K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements