Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.

Ruffling Drives Coproheme Decarboxylation by Facilitating PCET:A Theoretical Investigation of ChdC


Coproheme decarboxylase (ChdC) is an essential enzyme in the coproporphyrin dependent heme synthesis pathway which catalyzes oxidative decarboxylation of coproheme at the positions p2 and p4 to generate heme b under the action of hydrogen peroxide. A mysterious characteristic of catalytic mechanism of ChdC is that both of the two decarboxylation sites locate remotely from the iron center of coproheme which binds with hydrogen peroxide. By employing density functional theory calculations, we have studied coproheme decarboxylation mechanism of ChdC in detail. The calculation results show that in the first step of catalytic reaction, H2O2 homolysis takes place synergistically with proton coupled electron transfer process of a tyrosine(Tyr145) residing near p2 propionate. The produced reactive Tyr radical then abstracts a hydrogen atom form the β carbon of p2 propionate side chain, which is the rate-limiting step of the whole reaction with a 19.16 kcalmol-1 energy barrier. Finally, through intramolecular electron and proton rearrangement of coproporphyrin, decarboxylation of p2 propionate is accomplished . Our study revealed that the ruffled conformation of coproheme in ChdC is an important structure factor which facilitates the decarboxylation reaction. We also found that the hydrogen bond chain located below the coproheme ring plays a role to regulate the PCET process of Tyr145. In addition, molecular dynamics simulations discovered that Lys149 is responsible for stabilizing the harderoheme III and positioning the second decarboxylation site p4 to the catalytic Tyr145 site in the decarboxylation reaction of p4 site.

Back to tab navigation

Supplementary files

Article information

22 Jun 2020
First published
23 Jun 2020

Phys. Chem. Chem. Phys., 2020, Accepted Manuscript
Article type

Ruffling Drives Coproheme Decarboxylation by Facilitating PCET:A Theoretical Investigation of ChdC

Y. Zhang, J. Wang, C. Yuan, L. Wei, H. Tan, X. Li and G. Chen, Phys. Chem. Chem. Phys., 2020, Accepted Manuscript , DOI: 10.1039/D0CP02690E

Social activity

Search articles by author