Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 26, 2020
Previous Article Next Article

Polarizable embedding QM/MM: the future gold standard for complex (bio)systems?

Author affiliations

Abstract

Nowadays, hybrid QM/MM approaches are widely used to study (supra)molecular systems embedded in complex biological matrices. However, in their common formulation, mutual interactions between the quantum and classical parts are neglected. To go beyond such a picture, a polarizable embedding can be used. In this perspective, we focus on the induced point dipole formulation of polarizable QM/MM approaches and we show how efficient and linear scaling implementations have allowed their application to the modeling of complex biosystems. In particular, we discuss their use in the prediction of spectroscopies and in molecular dynamics simulations, including Born–Oppenheimer dynamics, enhanced sampling techniques and nonadiabatic descriptions. We finally suggest the theoretical and computational developments that still need to be achieved to overcome the limitations which have prevented so far larger diffusion of these methods.

Graphical abstract: Polarizable embedding QM/MM: the future gold standard for complex (bio)systems?

Back to tab navigation

Supplementary files

Article information


Submitted
20 Apr 2020
Accepted
12 Jun 2020
First published
16 Jun 2020

Phys. Chem. Chem. Phys., 2020,22, 14433-14448
Article type
Perspective

Polarizable embedding QM/MM: the future gold standard for complex (bio)systems?

M. Bondanza, M. Nottoli, L. Cupellini, F. Lipparini and B. Mennucci, Phys. Chem. Chem. Phys., 2020, 22, 14433
DOI: 10.1039/D0CP02119A

Social activity

Search articles by author

Spotlight

Advertisements