Jump to main content
Jump to site search

Issue 37, 2020
Previous Article Next Article

Facile preparation of nanoparticle based SERS substrates for trace molecule detection

Author affiliations

Abstract

In this work, we demonstrate that a polished Si wafer surface can be converted to possess strong surface-enhanced Raman scattering (SERS) activity by spray coating of polyol synthesized colloidal silver nanoparticles (AgNPs) at as low as 1% surface coverage. The SERS activity assays of substrate surfaces prepared with different production procedures (spray and spin coating) at different surface coverages are realized using population statistics. The resulting Raman enhancement factors (EFs) are discussed with the help of distance-dependent electromagnetic simulations for single particles and dimers. Statistics on the SERS effect and the corresponding EF calculations show that polyol synthesized AgNPs exhibit extremely strong SERS activity with EFs up to 108 at as low as 1% surface coverage. We discuss in this work that this is possible due to the distinct properties of polyol synthesized AgNPs such as atomically flat surfaces, sharp edges and corners naturally occurring in this synthesis method, which favor strong plasmonic activity. The method can be generalized to convert virtually any surface into a SERS substrate.

Graphical abstract: Facile preparation of nanoparticle based SERS substrates for trace molecule detection

Back to tab navigation

Article information


Submitted
06 Apr 2020
Accepted
22 Aug 2020
First published
24 Aug 2020

Phys. Chem. Chem. Phys., 2020,22, 21139-21146
Article type
Paper

Facile preparation of nanoparticle based SERS substrates for trace molecule detection

Ö. Demirtaş, D. Doğanay, İ. M. Öztürk, H. E. Ünalan and A. Bek, Phys. Chem. Chem. Phys., 2020, 22, 21139
DOI: 10.1039/D0CP01866J

Social activity

Search articles by author

Spotlight

Advertisements