Issue 27, 2020

Water-polyamide chemical interplay in desalination membranes explored by ambient pressure X-ray photoelectron spectroscopy

Abstract

Reverse osmosis using aromatic polyamide membranes is currently the most important technology for seawater desalination. The performance of reverse osmosis membranes is highly dependent on the interplay of their surface chemical groups with water and water contaminants. In order to better understand the underlying mechanisms of these membranes, we study ultrathin polyamide films that chemically resemble reverse osmosis membranes, using ambient pressure X-ray photoelectron spectroscopy. This technique can identify the functional groups at the membrane–water interface and allows monitoring of small shifts in the electron binding energy that indicate interaction with water. We observe deprotonation of free acid groups and formation of a ‘water complex’ with nitrogen groups in the polymer upon exposure of the membrane to water vapour. The chemical changes are reversed when water is removed from the membrane. While the correlation between functional groups and water uptake is an established one, this experiment serves to understand the nature of their chemical interaction, and opens up possibilities for tailoring future materials to specific requirements.

Graphical abstract: Water-polyamide chemical interplay in desalination membranes explored by ambient pressure X-ray photoelectron spectroscopy

Supplementary files

Article information

Article type
Paper
Submitted
05 Apr 2020
Accepted
24 Jun 2020
First published
29 Jun 2020

Phys. Chem. Chem. Phys., 2020,22, 15658-15663

Author version available

Water-polyamide chemical interplay in desalination membranes explored by ambient pressure X-ray photoelectron spectroscopy

S. M. Gericke, W. D. Mulhearn, D. E. Goodacre, J. Raso, D. J. Miller, L. Carver, S. Nemšák, O. Karslıoğlu, L. Trotochaud, H. Bluhm, C. M. Stafford and C. Buechner, Phys. Chem. Chem. Phys., 2020, 22, 15658 DOI: 10.1039/D0CP01842B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements