Issue 22, 2020

Nonadiabatic sunlight harvesting

Abstract

Experimental and theoretical evidence points out the crucial role of specific intramolecular vibrational modes resonant with excitonic splittings in the interpretation of long-lived coherences observed in the two-dimensional spectra of some natural and synthetic light harvesting complexes. For the natural situation of illumination by incoherent (sun)light, the relevance of these vibrations is analyzed here for light-harvesting vibronic prototype dimers. The detailed analysis of the density matrix dynamics reveals that the inclusion of intramolecular vibrational modes reinforces the exciton coherence up to one order of magnitude and may increase the populations of lowest energy single exciton states, as well as populations and coherences in the site basis. In sharp contrast to the case of initial-state preparation by coherent (laser)light-sources, the initial thermal state of the local vibrational modes, as well as that of the anticorrelated vibrational mode, evolves devoid of non-classical correlations as confirmed by the absence of negative values of its phase-space quasi-probability distribution at all times. Therefore, not only the long-lived coherences observed in the two-dimensional spectra are induced by the coherent character of pulsed laser sources, but it is unambiguously shown here that the non-classical character generally assigned to the anticorrelated vibrational mode also comes as the result of the preparation of the initial state by coherent pulsed laser sources.

Graphical abstract: Nonadiabatic sunlight harvesting

Supplementary files

Article information

Article type
Paper
Submitted
28 Mar 2020
Accepted
07 May 2020
First published
07 May 2020

Phys. Chem. Chem. Phys., 2020,22, 12678-12687

Nonadiabatic sunlight harvesting

L. F. Calderón and L. A. Pachón, Phys. Chem. Chem. Phys., 2020, 22, 12678 DOI: 10.1039/D0CP01672A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements