Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Electric-field-mediated magnetic properties of all-oxide CoFe2O4/La0.67Sr0.33MnO3/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 heterostructures

Author affiliations

Abstract

Electric-field-mediated magnetic properties were investigated in CoFe2O4/La0.67Sr0.33MnO3/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (CFO/LSMO/PMN-PT) heterostructures. The butterfly-like behavior of the magnetization under different electric fields indicates that the strain effect plays a critical role in the electric-field-mediated magnetic properties, leading to an increase in magnetization along the [100] direction but a decrease along the [01−1] direction in the CFO/LSMO/PMN-PT heterostructures. More interestingly, due to the large magnetostriction of the CFO layer, the coercivity of the CFO/LSMO/PMN-PT heterostructures decreases ∼50% along the [01−1] direction under the electric fields. The large modulation of the coercivity makes it possible to achieve electric-field-controlled magnetoresistance in the metal/CFO/LSMO/PMN-PT spin filter magnetic tunneling junctions.

Graphical abstract: Electric-field-mediated magnetic properties of all-oxide CoFe2O4/La0.67Sr0.33MnO3/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 heterostructures

Back to tab navigation

Supplementary files

Article information


Submitted
11 Mar 2020
Accepted
16 May 2020
First published
18 May 2020

Phys. Chem. Chem. Phys., 2020, Advance Article
Article type
Paper

Electric-field-mediated magnetic properties of all-oxide CoFe2O4/La0.67Sr0.33MnO3/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 heterostructures

P. Wang, C. Jin, D. Li, Y. Wang, S. Liu, X. Wang, X. Pang, D. Zheng, W. Zheng, R. Zheng and H. Bai, Phys. Chem. Chem. Phys., 2020, Advance Article , DOI: 10.1039/D0CP01374A

Social activity

Search articles by author

Spotlight

Advertisements