Jump to main content
Jump to site search


Characterisation of the temperature-dependent M1 to R phase transition in W-doped VO2 nanorod aggregates by Rietveld refinement and theoretical modelling

Author affiliations

Abstract

Understanding the mechanism of the insulator–metal transition (IMT) in VO2 is a necessary step in optimising this material's properties for a range of functional applications. Here, Rietveld refinement of synchrotron X-ray powder diffraction patterns is performed on thermochromic V1−xWxO2 (0.0 ≤ x ≤ 0.02) nanorod aggregates over the temperature range 100 ≤ T ≤ 400 K to examine the effect of doping on the structure and properties of the insulating monoclinic (M1) phase and metallic rutile (R) phase. Precise measurement of the lattice constants of the M1 and R phases enabled the onset (Ton) and endset (Tend) temperatures of the IMT to be determined accurately for different dopant levels. First-principles calculations reveal that the observed decrease in both Ton and Tend with increasing W content is a result of Peierls type V–O–V dimers being replaced by linear W–O–V dimers with a narrowing of the band gap. The results are interpreted in terms of the bandwidth-controlled Mott–Hubbard IMT model, providing a more detailed understanding of the underlying physical mechanisms driving the IMT as well as a guide to optimising properties of VO2-based materials for specific applications.

Graphical abstract: Characterisation of the temperature-dependent M1 to R phase transition in W-doped VO2 nanorod aggregates by Rietveld refinement and theoretical modelling

Back to tab navigation

Supplementary files

Article information


Submitted
25 Feb 2020
Accepted
26 Mar 2020
First published
26 Mar 2020

Phys. Chem. Chem. Phys., 2020, Advance Article
Article type
Paper

Characterisation of the temperature-dependent M1 to R phase transition in W-doped VO2 nanorod aggregates by Rietveld refinement and theoretical modelling

L. Miao, Y. Peng, D. Wang, J. Liang, C. Hu, E. Nishibori, L. Sun, C. A. J. Fisher and S. Tanemura, Phys. Chem. Chem. Phys., 2020, Advance Article , DOI: 10.1039/D0CP01058H

Social activity

Search articles by author

Spotlight

Advertisements