Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 13, 2020
Previous Article Next Article

Designing water splitting catalysts using rules of thumb: advantages, dangers and alternatives

Author affiliations

Abstract

Thermodynamic analysis of the oxygen evolution reaction (OER) hints toward an intrinsic overpotential caused by the nonoptimal adsorption-energy scaling relation between OH and OOH. Consequently, nowadays it is a widely accepted yet unverified rule of thumb that breaking such a scaling relation results in enhanced catalytic activity. In this perspective, we show that breaking the OH–OOH scaling relation does not per se lower the OER overpotential. Instead, electrocatalytic symmetry and ease of optimization are shown to be key factors when screening for enhanced OER catalysts. The essence of electrocatalytic symmetry is captured by a descriptor called the electrochemical-step symmetry index (ESSI). In turn, the ease of optimization and whether it should be scaling-based or scaling-free is provided by a procedure called δε optimization. Finally, taking the search for bifunctional catalysts for oxygen electrocatalysis as an example, we show that the alternative analysis can be straightforwardly extended to other electrocatalytic reactions.

Graphical abstract: Designing water splitting catalysts using rules of thumb: advantages, dangers and alternatives

Back to tab navigation

Supplementary files

Article information


Submitted
17 Feb 2020
Accepted
09 Mar 2020
First published
09 Mar 2020

Phys. Chem. Chem. Phys., 2020,22, 6797-6803
Article type
Perspective

Designing water splitting catalysts using rules of thumb: advantages, dangers and alternatives

O. Piqué, F. Illas and F. Calle-Vallejo, Phys. Chem. Chem. Phys., 2020, 22, 6797
DOI: 10.1039/D0CP00896F

Social activity

Search articles by author

Spotlight

Advertisements