Jump to main content
Jump to site search


The self-assembly behavior of polymer brush induced by the orientational ordering of rod backbones: A dissipative particle dynamics study

Abstract

Dissipative particle dynamics (DPD) simulations were used to study the self-assembly behavior of polymer brush with rod-coil backbones polycaprolactone-b-poly(2-(dimethylamino) ethyl methacrylate)-grafted cellulose nanocrystals (CNC-g-PCL-b-PDMAEMA) and to further examine the influences of polymer concentration, rod-block proportion and distribution of backbones and the grafting density of side chains on the resulting aggregate conformations. We proposed the “rod-coil competitive mechanism” for the self-assembly of brush polymer with rod–coil backbones. The results indicated that the micellar structures mainly depend on the relative intensity between the orientational ordering of rod blocks and the disordered packing of the flexible blocks. The cylindrical micelles were formed when the orientation order of rod blocks predominates, while the disorder of the flexible blocks contributes to the formation of spherical micelles. We further proved that the competitive relationship is affected by polymer concentration, rod-block proportion and distribution of backbones and the grafting density of side chains. The increasing rod-block proportion, the rod-coil-rod backbones and the asymmetric grafting side chains are beneficial to the orientation order of the brush-like polymer in self-assembly process, thereby inducing the formation of the cylindrical micelles. The self-assembly mechanism of rod-coil copolymer proposed in this study provides guidance and theoretical basis for the design and regulation of novel and complex polymer aggregates.

Back to tab navigation

Supplementary files

Article information


Submitted
15 Jan 2020
Accepted
06 Feb 2020
First published
07 Feb 2020

Phys. Chem. Chem. Phys., 2020, Accepted Manuscript
Article type
Paper

The self-assembly behavior of polymer brush induced by the orientational ordering of rod backbones: A dissipative particle dynamics study

J. Zhang, J. Xu, L. Wen, F. Zhang and L. J. Zhang, Phys. Chem. Chem. Phys., 2020, Accepted Manuscript , DOI: 10.1039/D0CP00235F

Social activity

Search articles by author

Spotlight

Advertisements