Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 19, 2020
Previous Article Next Article

Spontaneous liquid water dissociation on hybridised boron nitride and graphene atomic layers from ab initio molecular dynamics simulations

Author affiliations

Abstract

Two-dimensional materials such as graphene (G) and hexagonal boron nitride (BN) have demonstrated potential applications in membrane science and in particular for the harvesting of blue energy. Although pure G and BN atomic layers are known to remain inert towards neutral water, one may wonder about the aqueous reactivity of hybridized monolayers formed by joining BN and G sheets in a planar fashion. Here, we perform ab initio molecular dynamics calculations of liquid water in contact with all possible planar heterostructures. Remarkably, we could observe the spontaneous chemisorption and dissociation of the interfacial water molecule into its self-ions at one specific and non-standard one-dimensional border. Our simulations predict that this type of heterostructure is prone to ionize liquid water in the absence of any electrical gating.

Graphical abstract: Spontaneous liquid water dissociation on hybridised boron nitride and graphene atomic layers from ab initio molecular dynamics simulations

Back to tab navigation

Supplementary files

Article information


Submitted
16 Dec 2019
Accepted
13 Feb 2020
First published
13 Feb 2020

Phys. Chem. Chem. Phys., 2020,22, 10710-10716
Article type
Paper

Spontaneous liquid water dissociation on hybridised boron nitride and graphene atomic layers from ab initio molecular dynamics simulations

B. Grosjean, A. Robert, R. Vuilleumier and M. Bocquet, Phys. Chem. Chem. Phys., 2020, 22, 10710
DOI: 10.1039/C9CP06765E

Social activity

Search articles by author

Spotlight

Advertisements