Jump to main content
Jump to site search


Absorption Spectra of Benzoic Acid in Water at Different pH and in the Presence of Salts: Insights from the Integration of Experimental Data and Theoretical Cluster Models

Abstract

The absorption spectra of molecular organic chromophores in aqueous media are of considerable importance in environmental chemistry. In this work, the UV-vis spectra of benzoic acid (BA), the simplest aromatic carboxylic acid, in aqueous solutions at varying pH and in the presence of salts are measured experimentally. The solutions of different pH provide insights into the contributions from both the non-dissociated acid molecule and the deprotonated anionic species. The microscopic interpretation of these spectra is then provided by quantum chemical calculations for small cluster models of benzoic species (benzoic acid and benzoate anion) with water molecules. Calculations of the UV-vis absorbance spectra are then carried out for different clusters such as C6H5COOH∙(H2O)n and C6H5COO-∙(H2O)n, where n=0, 1 and 8. The following main conclusions from these calculations and the comparison to experimental results can be made: (i) the small (n=8) water cluster yields good quantitative agreement with observed solution experiments; (ii) the main peak position is found to be very similar at different levels of theory and is in excellent agreement with the experimental value, however, a weaker feature about 1 eV to lower energy (red shift) of the main peak is correctly reproduced only by using high level of theory, such as Algebraic Diagrammatic Construction (ADC); (iii) dissociation of the BA into ions is found to occur with a minimum of water molecules of n=8; (iv) the deprotonation of BA has an influence on the computed spectrum and the energetics of the lowest energy electronic transitions; (v) both non-dissociated BA and deprotonated BA contribute to the UV-vis spectrum at pH 2.5 and the deprotonated form of BA only at pH 8; (vi) the effect of the water on the spectra is much larger for the deprotonated species than for the non-dissociated acid and (vii) salts (NaCl and CaCl2) have minimal effect on the absorption spectrum. Overall, the results demonstrate the ability to further our understanding of the microscopic interpretation of the electronic structure and absorption spectra of BA in aqueous media through calculations restricted to small cluster models.

Back to tab navigation

Supplementary files

Article information


Submitted
13 Dec 2019
Accepted
10 Feb 2020
First published
11 Feb 2020

Phys. Chem. Chem. Phys., 2020, Accepted Manuscript
Article type
Paper

Absorption Spectra of Benzoic Acid in Water at Different pH and in the Presence of Salts: Insights from the Integration of Experimental Data and Theoretical Cluster Models

N. V. Karimova, M. Luo, V. Grassian and R. B. Gerber, Phys. Chem. Chem. Phys., 2020, Accepted Manuscript , DOI: 10.1039/C9CP06728K

Social activity

Search articles by author

Spotlight

Advertisements