Jump to main content
Jump to site search

Issue 7, 2020
Previous Article Next Article

Mechanistic study of hydrazine decomposition on Ir(111)

Author affiliations


Hydrogen transport and storage technology remain one of the critical challenges of the hydrogen economy. Hydrazine (N2H4) is a carbon-free hydrogen carrier which has been widely used as fuel in the field of space exploration. We have combined experiments and computer simulations in order to gain a better understanding of the N2H4 decomposition on Ir catalyst, the most efficient catalyst for hydrazine decomposition up to date. We have identified metallic Ir rather than IrO2 as the active phase for hydrazine decomposition and carried out density functional theory (DFT) calculations to systematically investigate the changes in the electronic structure along with the catalytic decomposition mechanisms. Three catalytic mechanisms to hydrazine decomposition over Ir(111) have been found: (i) intramolecular reaction between hydrazine molecules, (ii) intramolecular reaction between co-adsorbed amino groups, and (iii) hydrazine dehydrogenation assisted by co-adsorbed amino groups. These mechanisms follow five different pathways for which transition states and intermediates have been identified. The results show that hydrazine decomposition on Ir(111) starts preferentially with an initial N–N bond scission followed by hydrazine dehydrogenation assisted by the amino group produced, eventually leading to ammonia and nitrogen production. The preference for N–N scission mechanisms was rationalized by analyzing the electronic structure. This analysis showed that upon hydrazine adsorption, the π bond between nitrogen atoms becomes weaker.

Graphical abstract: Mechanistic study of hydrazine decomposition on Ir(111)

Back to tab navigation

Supplementary files

Article information

02 Dec 2019
31 Jan 2020
First published
10 Feb 2020

Phys. Chem. Chem. Phys., 2020,22, 3883-3896
Article type

Mechanistic study of hydrazine decomposition on Ir(111)

X. Lu, S. Francis, D. Motta, N. Dimitratos and A. Roldan, Phys. Chem. Chem. Phys., 2020, 22, 3883
DOI: 10.1039/C9CP06525C

Social activity

Search articles by author