Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 3, 2020
Previous Article Next Article

Metallization and superconductivity in methane doped by beryllium at low pressure

Author affiliations

Abstract

As one of the simplest hydrocarbons, methane (CH4) has great potential in the research of superconductors. However, the metallization of CH4 has been an issue for a long time. Here, we report the structure, metallization, and superconductivity of CH4 doped by Be at low pressures, based on first-principles calculations. The result shows that the thermodynamically stable BeCH4 with P[1 with combining macron] space-group can transform into a metal at ambient pressure. This ternary hydride BeCH4 exhibits a superconductivity of ∼6 K below 25.6 GPa. Interestingly, the superconducting critical temperature of BeCH4 can reach ∼30 K at 80 GPa in the form of an a-P1 space-group phase. The charge transfer from Be to CH4 molecules plays an important role in the superconductivity. Our results present a novel way to realize the metallization of methane at relative pressures and indicate that the doped methane is a potential candidate for seeking high temperature and low pressure superconductivity.

Graphical abstract: Metallization and superconductivity in methane doped by beryllium at low pressure

Back to tab navigation

Article information


Submitted
05 Nov 2019
Accepted
11 Dec 2019
First published
11 Dec 2019

Phys. Chem. Chem. Phys., 2020,22, 1069-1077
Article type
Paper

Metallization and superconductivity in methane doped by beryllium at low pressure

H. Lv, S. Zhang, M. Li, Y. Hai, N. Lu, W. Li and G. Zhong, Phys. Chem. Chem. Phys., 2020, 22, 1069
DOI: 10.1039/C9CP06008A

Social activity

Search articles by author

Spotlight

Advertisements