Issue 7, 2020

van der Waals force layered multiferroic hybrid perovskite (CH3NH3)2CuCl4 single crystals

Abstract

In inorganic–organic perovskites, the three-dimensional arrangement of the organic group results in more subtle balance of charge, spin and space, thereby providing an attractive route toward new multiferroics. Here we report the existing of multiple ferroic orderings in inorganic–organic layered perovskites with relative strong hydrogen bond ordering of the organic chains intra plane. In addition, the inter plane in perovskite is stacking via van der Waals force. However, such magnetoelectric coupling properties for this compound have not been reported since it is difficult to characterize the properties in single crystals since most of the hybrid perovskites are usually deliquescent and unstable when exposed to air. To deal with these problems, we synthesized a (CH3NH3)2CuCl4 single crystal by using a simple evaporation technique, and demonstrated ferroelectric, magnetic and magneto-electric properties of (CH3NH3)2CuCl4. The internal hydrogen bonding of easily tunable organic unit combined with 3d transition-metal layers in such hybrid perovskites make (CH3NH3)2CuCl4 a multiferroic crystal with magnetoelectrical coupling and offer an new way to engineer multifunctional multiferroic.

Graphical abstract: van der Waals force layered multiferroic hybrid perovskite (CH3NH3)2CuCl4 single crystals

Article information

Article type
Paper
Submitted
03 Nov 2019
Accepted
29 Jan 2020
First published
30 Jan 2020

Phys. Chem. Chem. Phys., 2020,22, 4235-4239

van der Waals force layered multiferroic hybrid perovskite (CH3NH3)2CuCl4 single crystals

Z. Hu, H. Zhao, Z. Cheng, J. Ding, H. Gao, Y. Han, S. Wang, Z. Xu, Y. Zhou, T. Jia, H. Kimura and M. Osada, Phys. Chem. Chem. Phys., 2020, 22, 4235 DOI: 10.1039/C9CP05976H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements