Jump to main content
Jump to site search


Theory and simulation developments of confined mass transport through graphene-based separation membranes

Abstract

Graphene-based membranes exhibit enormous potential in water desalination and purification since the ultrathin structure, superhigh water flux, tunable physicochemical properties and precise ion and molecular sieving performance. However, the transport behavior and mechanism of water, ions and other molecules across nanopores and nanocapillaries in separation process, especially the confined mass transport remains unclear, imposing severe limitation on many applications. Therefore, extensive experimental studies and theoretical calculation simulations have been carried out to investigate their unique structure and separation properties, particularly explore the associated confined mass transport mechanism. Herein, an overview of the theory and simulation developments of graphene-based separation membranes based on confined mass transport is provided, attempting to open up an avenue for designing graphene-based materials as a new generation of separation membranes in water purification field. This perspective focuses on five topics: (1) membrane transport models and simulation methods; (2) comparation between membrane simulations and expriments; (3) confined mass transport studies of graphene-based membranes with the assistance of molecular dynamics (MD) simulations; (4) fabrication of multifunctional composite membranes; (5) future research trends on graphene-based membranes.

Back to tab navigation

Article information


Submitted
11 Oct 2019
Accepted
07 Feb 2020
First published
07 Feb 2020

Phys. Chem. Chem. Phys., 2020, Accepted Manuscript
Article type
Perspective

Theory and simulation developments of confined mass transport through graphene-based separation membranes

Z. Zhang, L. Huang, Y. Wang, K. yang, Y. Du, J. Tang, Y. Wang, M. J. Kipper and L. A. Belfiore, Phys. Chem. Chem. Phys., 2020, Accepted Manuscript , DOI: 10.1039/C9CP05551G

Social activity

Search articles by author

Spotlight

Advertisements