Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 11, 2020
Previous Article Next Article

Theory and simulation developments of confined mass transport through graphene-based separation membranes

Author affiliations

Abstract

Graphene-based membranes exhibit enormous potential in water desalination and purification because of their ultrathin structure, superhigh water flux, tunable physicochemical properties and precise ionic and molecular sieving performance. However, the transport behavior and mechanism of water, ions and other molecules across nanopores and nanocapillaries in the separation process, especially the confined mass transport, remain unclear, imposing severe limitation on many applications. Therefore, extensive experimental studies and theoretical calculation simulations have been carried out to investigate their unique structure and separation properties, particularly to explore the associated confined mass transport mechanism. Herein, an overview of the theory and simulation developments of graphene-based separation membranes based on confined mass transport is provided, attempting to open up an avenue for designing graphene-based materials as a new generation of separation membranes in the water purification field. This perspective focuses on five topics: (1) membrane transport models and simulation methods; (2) comparison between membrane simulations and experiments; (3) confined mass transport studies of graphene-based membranes with the assistance of molecular dynamics (MD) simulations; (4) fabrication of multifunctional composite membranes; and (5) future research trends in graphene-based membranes.

Graphical abstract: Theory and simulation developments of confined mass transport through graphene-based separation membranes

Back to tab navigation

Article information


Submitted
11 Oct 2019
Accepted
07 Feb 2020
First published
07 Feb 2020

Phys. Chem. Chem. Phys., 2020,22, 6032-6057
Article type
Perspective

Theory and simulation developments of confined mass transport through graphene-based separation membranes

Z. Zhang, L. Huang, Y. Wang, K. Yang, Y. Du, Y. Wang, M. J. Kipper, L. A. Belfiore and J. Tang, Phys. Chem. Chem. Phys., 2020, 22, 6032
DOI: 10.1039/C9CP05551G

Social activity

Search articles by author

Spotlight

Advertisements